Entrer un problème...
Algèbre linéaire Exemples
[-1045-220-8-156]⎡⎢
⎢
⎢
⎢⎣−1045−220−8−156⎤⎥
⎥
⎥
⎥⎦
Étape 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
Étape 2
Étape 2.1
Multiply each element of R1R1 by -110−110 to make the entry at 1,11,1 a 11.
Étape 2.1.1
Multiply each element of R1R1 by -110−110 to make the entry at 1,11,1 a 11.
[-110⋅-10-110⋅45-220-8-156]⎡⎢
⎢
⎢
⎢⎣−110⋅−10−110⋅45−220−8−156⎤⎥
⎥
⎥
⎥⎦
Étape 2.1.2
Simplifiez R1R1.
[1-255-220-8-156]⎡⎢
⎢
⎢
⎢⎣1−255−220−8−156⎤⎥
⎥
⎥
⎥⎦
[1-255-220-8-156]⎡⎢
⎢
⎢
⎢⎣1−255−220−8−156⎤⎥
⎥
⎥
⎥⎦
Étape 2.2
Perform the row operation R2=R2-5R1R2=R2−5R1 to make the entry at 2,12,1 a 00.
Étape 2.2.1
Perform the row operation R2=R2-5R1R2=R2−5R1 to make the entry at 2,12,1 a 00.
[1-255-5⋅1-2-5(-25)20-8-156]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1−255−5⋅1−2−5(−25)20−8−156⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.2.2
Simplifiez R2R2.
[1-250020-8-156]⎡⎢
⎢
⎢
⎢⎣1−250020−8−156⎤⎥
⎥
⎥
⎥⎦
[1-250020-8-156]⎡⎢
⎢
⎢
⎢⎣1−250020−8−156⎤⎥
⎥
⎥
⎥⎦
Étape 2.3
Perform the row operation R3=R3-20R1R3=R3−20R1 to make the entry at 3,13,1 a 00.
Étape 2.3.1
Perform the row operation R3=R3-20R1R3=R3−20R1 to make the entry at 3,13,1 a 00.
[1-250020-20⋅1-8-20(-25)-156]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1−250020−20⋅1−8−20(−25)−156⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.3.2
Simplifiez R3R3.
[1-250000-156]⎡⎢
⎢
⎢
⎢⎣1−250000−156⎤⎥
⎥
⎥
⎥⎦
[1-250000-156]⎡⎢
⎢
⎢
⎢⎣1−250000−156⎤⎥
⎥
⎥
⎥⎦
Étape 2.4
Perform the row operation R4=R4+15R1R4=R4+15R1 to make the entry at 4,14,1 a 00.
Étape 2.4.1
Perform the row operation R4=R4+15R1R4=R4+15R1 to make the entry at 4,14,1 a 00.
[1-250000-15+15⋅16+15(-25)]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1−250000−15+15⋅16+15(−25)⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.4.2
Simplifiez R4R4.
[1-25000000]⎡⎢
⎢
⎢
⎢⎣1−25000000⎤⎥
⎥
⎥
⎥⎦
[1-25000000]⎡⎢
⎢
⎢
⎢⎣1−25000000⎤⎥
⎥
⎥
⎥⎦
[1-25000000]⎡⎢
⎢
⎢
⎢⎣1−25000000⎤⎥
⎥
⎥
⎥⎦
Étape 3
The pivot positions are the locations with the leading 11 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11a11
Pivot Columns: 11
Étape 4
The nullity is the number of columns without a pivot position in the row reduced matrix.
11